SygnałyiSystemy

 0    46 schede    kacperkamin
Scarica mp3 Stampa Gioca Testa il tuo livello
 
Domanda język polski Risposta język polski
transmisja synchroniczna
inizia ad imparare
clk, synchronizacja, zbocza sygnału
transmisja asynchroniczna
inizia ad imparare
baud rate, ramki
Bit parzystości
inizia ad imparare
Wykrywa zmianę nieparzystej liczby bitów
Checksum
inizia ad imparare
To suma arytmetyczna wartości liczbowych wszystkich przesłanych bajtów. Wynik dodawania jest doklejany do wiadomości
CRC
inizia ad imparare
Cały ciąg danych traktowany jest jak jeden wielomian. Dzieli się go przez ustalony wielomian generujący (modulo 2). Do wiadomości dołączana jest RESZTA z tego dzielenia
Kodowanie kanałowe
inizia ad imparare
dostosowanie, detekcja i korekcja, fizyczne formowanie
Twierdzenie Shannona
inizia ad imparare
C - przepustowość kanału [bit/s] W - szerokość pasma [Hz] S/N - moc sygnału/moc szumu (skala liniowa)
BER
inizia ad imparare
stosunek liczby bitów odebranych z błędami do całkowitej liczby przesłanych bitów
Cele modelu OSI
inizia ad imparare
Ułatwienie projektowania i zrozumienia sieci, Umożliwienie współpracy różnych producentów, uporządkowanie funkcji sieciowych
Warstwa 1 - Fizyczna
inizia ad imparare
Fizyczne przesyłanie bitów (0 i 1) przez medium transmisyjne, Definicja parametrów elektrycznych i mechanicznych. NP Ethernet lub Rs232
Warstwa 2 - Łącza danych
inizia ad imparare
bezbłędnej transmisji ramek, Wykrywanie i korekcja błędów (CRC), Kontrola dostępu do medium
MAC (Media Access Control)
inizia ad imparare
Adresowanie fizyczne, Sterowanie dostępem, Ramkowanie
Warstwa 3 - Sieciowa
inizia ad imparare
Adresacja, Określenie optymalnej ścieżki przez sieć, Fragmentacja i składanie pakietów
Warstwa 4 - Transportowa
inizia ad imparare
Zapewnienie niezawodnej komunikacji między aplikacjami, Segmentacja danych i kontrola przepływu, Detekcja i korekcja błędów
Warstwa 5 - Sesji
inizia ad imparare
Zarządzanie nawiązywaniem, utrzymywaniem i kończeniem sesji komunikacyjnych, Synchronizacja i ponowne połączenie po przerwie
Warstwa 6 - Prezentacji
inizia ad imparare
Konwersja danych między różnymi formatami, Szyfrowanie i deszyfrowanie danych, Kompresja danych
Warstwa 7 - Aplikacji
inizia ad imparare
Zapewnienie interfejsu pomiędzy użytkownikiem a siecią, Komunikacja między aplikacjami
Synchronizacja
inizia ad imparare
zapewnienie zgodności w czasie pomiędzy nadajnikiem a odbiornikiem – aby dane były odczytywane w tych samych momentach, w jakich zostały wysłane
Jak uzyskać synchronizacje
inizia ad imparare
Zegar nadawcy i odbiorcy muszą pracować z tą samą częstotliwością, Odbiornik może: - odzyskać taktowanie z sygnału danych (np. metodą PLL)- być sterowany wspólnym zegarem(np. w centralach cyfrowych)
Sygnalizacja
inizia ad imparare
to proces wymiany informacji sterujących między urządzeniami w sieci
Funkcje sygnalizacji
inizia ad imparare
- Zestawianie i rozłączanie połączeń.- Nadzór nad połączeniem (zajętość, zakończenie).- Przenoszenie informacji o błędach lub usługach dodatkowych (np. przekierowanie).- Sterowanie zasobami sieci.
PCM –
inizia ad imparare
Pulse Code Modulation-cyfrowa kodowania sygnałów analogowych (np. mowy) oraz podstawowy sposób transmisji w sieciach metoda telekomunikacyjnych. Etapy: próbkowanie itd
Sieci szerokopasmowe
inizia ad imparare
wykorzystuje szerokie pasmo do przesyłu danych. Infrastruktury telekomunikacyjnej i wykorzystywane do tego technologie np.: linia telefoniczna, kable koncentryczne, światłowód i sieci bezprzewodowe.
CoS
inizia ad imparare
(classes of service)-to przydział priorytetów pakietom, jak szybko dany pakiet musi dotrzeć do odbiorcy. Ma to bezpośredni wpływ na QoS (Quality of service) oraz GoS (Grade of Service)
IP (Internet Protocol) – Tradycyjny Routing
inizia ad imparare
Jest to bezpołączeniowy protokół warstwy 3 (Sieciowej), oparty na adresowaniu logicznym (IPv4/IPv6).
MPLS (Multiprotocol Label Switching)
inizia ad imparare
(labels) do przesyłania pakietów bez potrzeby analizy pakietu za każdym razem przejścia przez router.(warstwa 2.5). Router E-LSR lub LER (Edge Label Switching Router) nadaje etykietę pakietowi i przechodząc przez kolejne LSR pakiet przesyłany jest dalej.
Mechanizm (Label Swapping)
inizia ad imparare
LER Ingress: Klasyfikacja IP → dodanie etykiety (PUSH). LSR: Ignoruje IP. Szybka podmiana etykiety wejściowej na wyjściową (SWAP) w oparciu o tablicę. LER Egress: Usunięcie etykiety (POP) → wysłanie czystego IP.
xDSL
inizia ad imparare
Transmisja danych liniami telefonicznymi (miedź). Wykorzystuje podział częstotliwości (FDM): dół pasma dla głosu, góra dla danych. ADSL: Asymetryczny (Download > Upload). Wada: Tłumienie – prędkość drastycznie spada wraz z odległością od centrali.
GPON
inizia ad imparare
Pasywna sieć optyczna typu punkt-wielopunkt. Elementy: OLT (centrala) → Splitter (pasywny dzielnik) → ONT (klient). Działanie: Downstream: Broadcast (wszyscy dostają wszystko, filtrują swoje). Upstream:(nadawanie w przydzielonych szczelinach czasu).
Architektura sieci komurkowej
inizia ad imparare
User Equipment (UE) ● Telefon, korzysta z karty SIM do identyfikacji w sieci 2. Radio Access Network (RAN) ● Stacje bazowe, w 2/3G nazywane BTS/NodeB, w 4G eNodeB, a w 5G gNodeB 3. Core Network (CN) ● Centrala operatora, zarządza całą siecią
podział pasma sieci komórkowej
inizia ad imparare
TDD (Time Divison Duplex) Transmisja odbywa się w ustalonych slotach czasowych przeznaczonych osobno na uplink i na downlink na tej samej częstotliwości. FDD (Frequency DIvision Duplex) Podział na dwa symetryczne bloki częstotliwości,
1G (lata 80.
inizia ad imparare
Cel: Wyłącznie rozmowy głosowe (brak SMS). Technologia: Sygnał w pełni analogowy (FM). Wielodostęp: FDMA (każdy ma osobny kanał częstotliwości). Wady: Brak szyfrowania (łatwy podsłuch), brak roamingu, duże telefony
2G lata90
inizia ad imparare
Przełom: Sygnał cyfrowy, karty SIM, szyfrowanie, roaming. Usługi: Głos, SMS, proste dane (GPRS). Technologia: Komutacja łączy (Circuit Switching). Wielodostęp: TDMA (podział czasu na szczeliny - rozmowa na zmianę).
3G (lata 2000.)
inizia ad imparare
Cel: Mobilny Internet, wideorozmowy. Technologia: HSPA (szybszy transfer). Wielodostęp: CDMA/WCDMA (kodowy). Użytkownicy nadają w tym samym czasie na szerokim paśmie, a rozróżniani są unikalnymi kodami matematycznymi
4G
inizia ad imparare
Architektura: All-IP (tylko pakiety). Głos przesyłany jako dane (VoLTE). Wielodostęp: OFDMA (podział pasma na setki podnośnych). Cechy: Szerokopasmowy Internet (do 1 Gb/s), niskie opóźnienia (ok. 20ms), streaming HD
5 (5G)
inizia ad imparare
3 cele: eMBB (duża prędkość), mMTC (masowe IoT, miliony czujników), URLLC (niezawodność, opóźnienia poniżej 1ms dla aut). Tech: Massive MIMO (dużo anten), Beamforming (kierunkowanie wiązki), Network Slicing (krojenie sieci)
FDMA
inizia ad imparare
Najstarsza technika (1G). Pasmo radiowe dzielone jest na węższe kanały częstotliwości. Każdy użytkownik otrzymuje jeden kanał na wyłączność na czas rozmowy. Jest mało efektywna (cisza też zajmuje kanał)
TDMA (Time Division)
inizia ad imparare
Użytkownicy korzystają z tej samej częstotliwości, ale w różnych momentach. Czas podzielony jest na szczeliny (sloty). Nadajesz tylko w swoim krótkim okienku czasowym, potem czekasz na kolejną kolej.
CDMA
inizia ad imparare
szyscy nadają w tym samym czasie na tej samej szerokiej częstotliwości (rozpraszanie widma). Każdy sygnał jest mnożony przez unikalny kod matematyczny. Odbiornik wyławia właściwą rozmowę znając ten kod
OFDMA
inizia ad imparare
Podstawa 4G i 5G. Pasmo dzielone na tysiące gęsto upakowanych podnośnych, które są ortogonalne (nie zakłócają się wzajemnie). Użytkownikowi przydziela się grupę podnośnych w zależności od potrzeb. Bardzo odporna na zaniki sygnału
WDM
inizia ad imparare
(Wavelength Division Multiplexing)-Technika multipleksacji falowej polega na jednoczesnym przesyłaniu wielu sygnałów świetlnych o różnych długościach fal tym samym włóknem światłowodowym. Każda długość fali przenosi niezależny kanał danych.
Jak działa światłowód
inizia ad imparare
Całkowitego Wewnętrznego Odbicia. Światło wpuszczone do rdzenia pod odpowiednim kątem (mniejszym niż kąt graniczny) odbija się od granicy rdzeń-płaszcz jak od lustra i "zygzakiem" wędruje na koniec przewodu.
Budowa włókna światłowodu
inizia ad imparare
1) Rdzeń (Core): Środek, którym biegnie światło. Ma wyższy współczynnik załamania światła ($n_1$). Płaszcz (Cladding): Otoczka rdzenia. Ma niższy współczynnik załamania światła 2.
Przyczyny tłumienia
inizia ad imparare
Rozpraszanie Rayleigha: Fizyczna natura szkła. Fotony zderzają się z cząsteczkami w szkle. Zasada: Im krótsza fala(fiol) tym większe rozpraszanie Absorpcja: Zanieczyszczenia wodne w szkle "pożerają" światło na konkretnych długościach fali
Okna transmisyjne
inizia ad imparare
I Okno (850 nm): Duże tłumienie. Tanie lasery/LED. II Okno (1310 nm): Niskie tłumienie, zerowa dyspersja, średnie dyst. III Okno (1550 nm): Najniższe tłumienie (ok. 0.2 dB/km)
Wzmacnianie Sygnału Optycznego
inizia ad imparare
Kiedyś używano regeneratorów O-E-O. EDFA: W pełni optyczny wzmacniacz (bez konw na I). Działa w III oknie (1550 nm). Wykorzystuje odcinek światłowodu domieszkowany Erbem oraz laser pompujący, który dostarcza energię do wzmocnienia przelatującego sygnału.

Devi essere accedere per pubblicare un commento.