Domanda |
Risposta |
A function of the TCP sequence number is: To associate a chronological number with each TCP segment, allowing the receiver to properly reorder the individual segments of data inizia ad imparare
|
|
|
|
|
A function of the TCP sequence number is: To inform the sender of the next expected chronological sequence number of the TCP segment inizia ad imparare
|
|
|
|
|
A function of the TCP sequence number is: To reassemble IP fragments inizia ad imparare
|
|
|
|
|
A function of the TCP sequence number is: To increment the hop count on all TCP segments inizia ad imparare
|
|
|
|
|
A server port of UDP or TCP 53 is typically associated with what service?: HTTP inizia ad imparare
|
|
|
|
|
A server port of UDP or TCP 53 is typically associated with what service?: DNS inizia ad imparare
|
|
|
|
|
A server port of UDP or TCP 53 is typically associated with what service?: FTP inizia ad imparare
|
|
|
|
|
A server port of UDP or TCP 53 is typically associated with what service?: RPC inizia ad imparare
|
|
|
|
|
A TCP flag of RESET indicates: An intention to open a new TCP connection inizia ad imparare
|
|
|
|
|
A TCP flag of RESET indicates: An intention to gracefully close and acknowledge the termination of both sides of the connection inizia ad imparare
|
|
|
|
|
A TCP flag of RESET indicates: An intention to abort a TCP connection inizia ad imparare
|
|
|
|
|
A TCP flag of RESET indicates: An intention to close the connection after all in-transit data is received inizia ad imparare
|
|
|
|
|
A testbed is a bed that can be tested to see if it is comfortable inizia ad imparare
|
|
|
|
|
A testbed is a platform for conducting rigorous, transparent, and replicable testing of scientific theories, computational tools and new technologies inizia ad imparare
|
|
|
|
|
A testbed is the Spirent Test Center inizia ad imparare
|
|
|
|
|
A testbed is a dedicated server that runs components of PlanetLab services inizia ad imparare
|
|
|
|
|
A value of 6 in the protocol field of the IP header represents: An embedded protocol of ICMP follows the IP header inizia ad imparare
|
|
|
|
|
A value of 6 in the protocol field of the IP header represents: An embedded protocol of UDP follows the IP header inizia ad imparare
|
|
|
|
|
A value of 6 in the protocol field of the IP header represents: An embedded protocol of TCP follows the IP header inizia ad imparare
|
|
|
|
|
A value of 6 in the protocol field of the IP header represents: An embedded protocol of TCP precedes the IP header inizia ad imparare
|
|
|
|
|
Application nodes: maintain the set of network interface (e.g. eth0, wlan0) in the network node inizia ad imparare
|
|
|
|
|
Application nodes: are often modeled as compound modules containing separate modules for queues, classes MAC, and PHY protocols inizia ad imparare
|
|
|
|
|
Application nodes: are represented by compound modules which are connected to the network layer protocol other network interfaces in the wired case inizia ad imparare
|
|
|
|
|
Application nodes: model the user behavior as well as the application program (e.g. browser), and the application layer protocol (e.g. HTTP) inizia ad imparare
|
|
|
|
|
[!] ARP protocol: maps a network layer protocol address to a data link layer hardware address inizia ad imparare
|
|
|
|
|
[!] ARP protocol: is used to provide secure connections across the Internet inizia ad imparare
|
|
|
|
|
[!] ARP protocol: is used to resolve IP address to the corresponding Ethernt address inizia ad imparare
|
|
|
|
|
[!] ARP protocol: is used to automatically provide IP addresses to network computers inizia ad imparare
|
|
|
|
|
CSMA: stands for Computer Shared Medium Access inizia ad imparare
|
|
|
|
|
CSMA: stands for Carrier Sense Multiple Access inizia ad imparare
|
|
|
|
|
CSMA: is a protocol in which a node uses a token which gives transmission privilege on shared medium inizia ad imparare
|
|
|
|
|
CSMA: is a protocol which a node verifies the absence of other traffic before transmitting on the shared transmission medium inizia ad imparare
|
|
|
|
|
[!] CSMA/CA: stands for Computer Shared Medium Access with Collision Avoidance inizia ad imparare
|
|
|
|
|
[!] CSMA/CA: stands for Carrier Sense Multiple Access with Collision Avoidance inizia ad imparare
|
|
|
|
|
[!] CSMA/CA: is used to improve the performance of the CSMA inizia ad imparare
|
|
|
|
|
[!] CSMA/CA: is a protocol which a node verifies the absence of other traffic before transmitting on the shred transmission medium inizia ad imparare
|
|
|
|
|
EtherAppClient: is a module implementing the CSMA protocol inizia ad imparare
|
|
|
|
|
EtherAppClient: is a module implementing an Ethernet application that only receives packets inizia ad imparare
|
|
|
|
|
EtherAppClient: is a traffic generator the periodically sends messages (Ethernet frames) inizia ad imparare
|
|
|
|
|
EtherAppClient: accepts connections from EtherAppServer on a specified port inizia ad imparare
|
|
|
|
|
[!] EtherAppServer: is a module implementing the CSMA protocol inizia ad imparare
|
|
|
|
|
[!] EtherAppServer: is a module implementing an Ethernet application that only receives packets inizia ad imparare
|
|
|
|
|
[!] EtherAppServer: generates frames containing EthernetAppResp chunks inizia ad imparare
|
|
|
|
|
[!] EtherAppServer: accepts connections on a specified port inizia ad imparare
|
|
|
|
|
[!] INET supports: nodes mobility inizia ad imparare
|
|
|
|
|
[!] INET supports: simulation visualization inizia ad imparare
|
|
|
|
|
[!] INET supports: external frameworks inizia ad imparare
|
|
|
|
|
[!] INET supports: Javascript plugins inizia ad imparare
|
|
|
|
|
Ipv4NetworkConfigurator: supports manual routes and automatic routes inizia ad imparare
|
|
|
|
|
Ipv4NetworkConfigurator: supports manual and automatic link configurations e.g. bandwidth, delays inizia ad imparare
|
|
|
|
|
Ipv4NetworkConfigurator: assigns IPv4 addresses and sets up static routing for an IPv4 network inizia ad imparare
|
|
|
|
|
Ipv4NetworkConfigurator: supports both manual and automatic address assignment inizia ad imparare
|
|
|
|
|
[!] Ipv4RoutingTable: supports manual routes and automatic routes inizia ad imparare
|
|
|
|
|
[!] Ipv4RoutingTable: supports manual and automatic link configurations e.g. bandwidth, delays inizia ad imparare
|
|
|
|
|
[!] Ipv4RoutingTable: stores a routing table inizia ad imparare
|
|
|
|
|
[!] Ipv4RoutingTable: supports both manual and automatic routes assignment inizia ad imparare
|
|
|
|
|
Parameters applied to the simulation may be submitted in: configuration file, e.g. *ini inizia ad imparare
|
|
|
|
|
Parameters applied to the simulation may be submitted in: topology file e.g. *ned inizia ad imparare
|
|
|
|
|
Parameters applied to the simulation may be submitted in: in the simulation code *. cpp inizia ad imparare
|
|
|
|
|
Parameters applied to the simulation may be submitted in: in the other way inizia ad imparare
|
|
|
|
|
PhysicalEnvironment: arranges nodes in a physical environment inizia ad imparare
|
|
|
|
|
PhysicalEnvironment: measures temperature of a physical environment inizia ad imparare
|
|
|
|
|
PhysicalEnvironment: models the effect of a physical environment on radio signal propagation inizia ad imparare
|
|
|
|
|
PhysicalEnvironment: defines a set of physical objects inizia ad imparare
|
|
|
|
|
Results of the simulation are saved as: Arrays, lists and scalars inizia ad imparare
|
|
|
|
|
Results of the simulation are saved as: Vectors, scalars and animations inizia ad imparare
|
|
|
|
|
Results of the simulation are saved as: Vectors and scalars inizia ad imparare
|
|
|
|
|
Results of the simulation are saved as: Arrays, vectors and lists inizia ad imparare
|
|
|
|
|
Round-trip time (RTT): is the measurement of the time taken by an object to travel a distance through a medium inizia ad imparare
|
|
|
|
|
Round-trip time (RTT): is the length of time it takes for a signal to travel in one direction inizia ad imparare
|
|
|
|
|
Round-trip time (RTT): specifies the latency for a bit of data to travel across the network from on communication endpoint to another inizia ad imparare
|
|
|
|
|
Round-trip time (RTT): is the amount of time it takes for a signal to be sent plus the amount of time for acknowledgement of the signal having been received inizia ad imparare
|
|
|
|
|
StandardHost node contains the most common Internet protocols such as: LTE inizia ad imparare
|
|
|
|
|
StandardHost node contains the most common Internet protocols such as: TCP inizia ad imparare
|
|
|
|
|
StandardHost node contains the most common Internet protocols such as: UDP inizia ad imparare
|
|
|
|
|
StandardHost node contains the most common Internet protocols such as: BGP inizia ad imparare
|
|
|
|
|
TCP typically begins a session with: The three-way handshake of client to server with SYN set, the server response of SYN/ACK, and the client acknowledgement of ACK inizia ad imparare
|
|
|
|
|
TCP typically begins a session with: The three-way handshake of server to client with SYN set, the clientresponse of SYN/ACK, and the server acknowledgement of ACK inizia ad imparare
|
|
|
|
|
TCP typically begins a session with: TCP is not connection oriented so no handshake is required inizia ad imparare
|
|
|
|
|
TCP typically begins a session with: A handshake consisting of the client request to the server with SYN set and a server response of a SYN inizia ad imparare
|
|
|
|
|
TcpBasicClientApp: accepts any number of incoming TCP connections inizia ad imparare
|
|
|
|
|
TcpBasicClientApp: sends back the messages that arrive to it inizia ad imparare
|
|
|
|
|
TcpBasicClientApp: is a client for a generic request-response style protocol over TCP inizia ad imparare
|
|
|
|
|
TcpBasicClientApp: communicates with a server sessions inizia ad imparare
|
|
|
|
|
TCPSinkAPP: listens on an TCP port, and sends back each received packet to its sender inizia ad imparare
|
|
|
|
|
TCPSinkAPP: generates traffic for a TCP application inizia ad imparare
|
|
|
|
|
TCPSinkAPP: accepts any number of incoming TCP connections, and discard whatever arrives on inizia ad imparare
|
|
|
|
|
TCPSinkAPP: sinks TCP packets and leaves the others (e.g. TCP packets) inizia ad imparare
|
|
|
|
|
[!] The DUT is a: device under test inizia ad imparare
|
|
|
|
|
[!] The DUT is a: device UDP traffic inizia ad imparare
|
|
|
|
|
[!] The DUT is a: driver urgent transfer inizia ad imparare
|
|
|
|
|
[!] The DUT is a: Spirent Test Center interface inizia ad imparare
|
|
|
|
|
The components of the testbed are: experimental subsystem inizia ad imparare
|
|
|
|
|
The components of the testbed are: comfortable mattress inizia ad imparare
|
|
|
|
|
The components of the testbed are: monitoring subsystem inizia ad imparare
|
|
|
|
|
The components of the testbed are: wireless subsystem inizia ad imparare
|
|
|
|
|
The following languages are used for description of a simulation: Protel inizia ad imparare
|
|
|
|
|
The following languages are used for description of a simulation: VHDL inizia ad imparare
|
|
|
|
|
The following languages are used for description of a simulation: Proto-C inizia ad imparare
|
|
|
|
|
The following languages are used for description of a simulation: C/C++ inizia ad imparare
|
|
|
|
|
The ISO/OSI model consists of three layers. inizia ad imparare
|
|
|
|
|
The ISO/OSI model consists of five layers. inizia ad imparare
|
|
|
|
|
The ISO/OSI model consists of seven layers. inizia ad imparare
|
|
|
|
|
The ISO/OSI model consists of eight layers. inizia ad imparare
|
|
|
|
|
The slice is a: set of allocated resources distributed across PlanetLab. inizia ad imparare
|
|
|
|
|
The slice is a: set of allocated resources on a single PlanetLab node. inizia ad imparare
|
|
|
|
|
The slice is a: physical location where PlanetLab nodes are located. inizia ad imparare
|
|
|
|
|
The slice is a: dedicated server that runs components of PlanetLab services. inizia ad imparare
|
|
|
|
|
The sliver is a: set of allocated resources distributed across PlanetLab. inizia ad imparare
|
|
|
|
|
The sliver is a: slice (set of allocated resources) running on a specific node inizia ad imparare
|
|
|
|
|
The sliver is a: set of allocated resources on a single PlanetLab node inizia ad imparare
|
|
|
|
|
The sliver is a: physical location where PlanetLab nodes are located. inizia ad imparare
|
|
|
|
|
The silver is a: dedicated server that runs components of PlanetLab services. inizia ad imparare
|
|
|
|
|
[!] The Stream Block is a: “summary” definition, it can represent a single stream on a single port, or 1000s of stream across 100s ports inizia ad imparare
|
|
|
|
|
[!] The Stream Block is a: Spirent chassis inizia ad imparare
|
|
|
|
|
[!] The Stream Block is a: router inizia ad imparare
|
|
|
|
|
[!] The Stream Block is a: single stream on s single port inizia ad imparare
|
|
|
|
|
The TCP is a |connection-oriented| protocol inizia ad imparare
|
|
|
|
|
The TCP is a |reliable| protocol inizia ad imparare
|
|
|
|
|
The TCP is a |both a and b| protocol inizia ad imparare
|
|
|
|
|
The TCP is a |encypted| protocol inizia ad imparare
|
|
|
|
|
The TCP is a |plain text| protocol inizia ad imparare
|
|
|
|
|
The TCP is a |none of the above| protocol inizia ad imparare
|
|
|
|
|
The TCP/IP model consists of |three| layers inizia ad imparare
|
|
|
|
|
The TCP/IP model consists of |four| layers inizia ad imparare
|
|
|
|
|
The TCP/IP model consists of |five| layers inizia ad imparare
|
|
|
|
|
The TCP/IP model consists of |seven| layers inizia ad imparare
|
|
|
|
|
To run the Omnet++ executable, you need an: omnetpp. ini inizia ad imparare
|
|
|
|
|
To run the Omnet++ executable, you need an: omnetpp. inf inizia ad imparare
|
|
|
|
|
To run the Omnet++ executable, you need an: omnetpp. txt inizia ad imparare
|
|
|
|
|
To run the Omnet++ executable, you need an: omnetpp. vec inizia ad imparare
|
|
|
|
|
Using the Stream Block Editor of the Spirent Test Center we can define: the Ethernet frame inizia ad imparare
|
|
|
|
|
Using the Stream Block Editor of the Spirent Test Center we can define: the UDP header inizia ad imparare
|
|
|
|
|
Using the Stream Block Editor of the Spirent Test Center we can define: the IPv4 header: the gateway in the UDP header inizia ad imparare
|
|
|
|
|
Using the Stream Block Editor of the Spirent Test Center we can define: the destination MAC address in UDP header inizia ad imparare
|
|
|
|
|
Using the Stream Block Editor of the Spirent Test Center we can define inizia ad imparare
|
|
Using the Stream Block Editor of the Spirent Test Center we can define
|
|
|
UDPSink: listens on an UDP port, and sends back each received packet to its sender inizia ad imparare
|
|
|
|
|
UDPSink: generates traffic for a UDP application inizia ad imparare
|
|
|
|
|
UDPSink: consumes and prints packets received from the UDP module inizia ad imparare
|
|
|
|
|
UDPSink: sinks UDP packets and leaves the other (e.g. TCP packets) inizia ad imparare
|
|
|
|
|
What is a typical response from a host that receives a UDP packet on a non-listening port?: A UDP reset flag set to the sender inizia ad imparare
|
|
|
|
|
What is a typical response from a host that receives a UDP packet on a non-listening port?: A UDP FIN flag set to the sender inizia ad imparare
|
|
|
|
|
What is a typical response from a host that receives a UDP packet on a non-listening port?: An ICMP port unreachable message to the sender inizia ad imparare
|
|
|
|
|
What is a typical response from a host that receives a UDP packet on a non-listening port?: A UDP port unreachable message to the sender inizia ad imparare
|
|
|
|
|
What is the function of a router?: It determines the entire route for an IP packet from source to destination host inizia ad imparare
|
|
|
|
|
What is the function of a router?: It uses ARP to route the packet to the next hop inizia ad imparare
|
|
|
|
|
What is the function of a router?: It uses DNS to route the packet to the next hop inizia ad imparare
|
|
|
|
|
What is the function of a router?: It attempts to move the IP packet one hop closer to the destination inizia ad imparare
|
|
|
|
|
What is the output of the Omnet++ simulation?: The simulation results are recorded into output scalar (. sca) file inizia ad imparare
|
|
|
|
|
What is the output of the Omnet++ simulation?: The simulation results are recorded into output vector (. vec) file inizia ad imparare
|
|
|
|
|
What is the output of the Omnet++ simulation?: The simulation results are recorded into output vector (. vec) and output scalar (. sca) files inizia ad imparare
|
|
|
|
|
What is the output of the Omnet++ simulation?: none of the above inizia ad imparare
|
|
|
|
|
[!] Which are predefined geographical (?) scales of network topologies?: world inizia ad imparare
|
|
|
|
|
[!] Which are predefined geographical (?) scales of network topologies?: enterprise inizia ad imparare
|
|
|
|
|
[!] Which are predefined geographical (?) scales of network topologies?: campus inizia ad imparare
|
|
|
|
|
[!] Which are predefined geographical (?) scales of network topologies?: office inizia ad imparare
|
|
|
|
|
Which of the following best characterizes TCP versus UDP (in most cases)?: TCP is less reliable and quicker inizia ad imparare
|
|
|
|
|
Which of the following best characterizes TCP versus UDP (in most cases)?: TCP is slower, more reliable, and requires more overhead inizia ad imparare
|
|
|
|
|
Which of the following best characterizes TCP versus UDP (in most cases)?: TCP is faster, more reliable, and more streamlined inizia ad imparare
|
|
|
|
|
Which of the following best characterizes TCP versus UDP (in most cases)?: TCP is less reliable and connection-oriented inizia ad imparare
|
|
|
|
|
Which topics were NOT covered by twelve pdf manuals available on the Platform?: TCP inizia ad imparare
|
|
|
|
|
Which topics were NOT covered by twelve pdf manuals available on the Platform?: WiFi inizia ad imparare
|
|
|
|
|
Which topics were NOT covered by twelve pdf manuals available on the Platform?: LTE inizia ad imparare
|
|
|
|
|
Which topics were NOT covered by twelve pdf manuals available on the Platform?: Queuing disciplines inizia ad imparare
|
|
|
|
|