Tezy rachunku predykatów

 0    16 schede    mikolajkrzysztofnowakowski
Scarica mp3 Stampa Gioca Testa il tuo livello
 
Domanda język polski Risposta język polski
prawo zastępowania dużego kwantyfikatora przez mały kwantyfikator
inizia ad imparare
∧x(A)->∨x(A)
prawo przestawiania dużych kwantyfikatorów
inizia ad imparare
ΛxΛy(A)=ΛyΛx(A)
prawo przestawiania małych kwantyfikatorów
inizia ad imparare
∨x∨y(A)=∨y∨x(A)
prawo przestawiania małego kwantyfikatora z dużym
inizia ad imparare
∨xΛy(A)->Λy∨x(A)
prawo negowania dużego kwantyfikatora
inizia ad imparare
~Λx(A)=∨x~(A)
prawo negowania małego kwantyfikatora
inizia ad imparare
~∨x(A)=Λx~(A)
prawo zastępowania dużego kwantyfikatora
inizia ad imparare
Λx(A)=~∨x~(A)
prawo zastępowania małego kwantyfikatora
inizia ad imparare
∨x(A)=~Λx~(A)
prawo rozkładania dużego kwantyfikatora względem implikacji
inizia ad imparare
Λx(A->B)->[Λx(A)->Λx(B)]
prawo rozkładania małego kwantyfikatora względem implikacji
inizia ad imparare
Λx(A->B)->[∨x(A)->∨x(B)]
prawo rozkładania dużego kwantyfikatora względem koniunkcji
inizia ad imparare
Λx(A^B)=Λx(A)^Λx(B)
prawo rozkładania małego kwantyfikatora względem alternatywy
inizia ad imparare
∨x(AvB)=∨x(A)v∨x(B)
prawo składania dużego kwantyfikatora względem alternatywy
inizia ad imparare
Λx(A)vΛx(B)->Λx(AvB)
prawo rozkładania małego kwantyfikatora względem koniunkcji
inizia ad imparare
∨x(A^B)->∨x(A)^∨x(B)
prawo ekstensjonalności dla dużego kwantyfikatora
inizia ad imparare
Λx(A=B)->Λx(A)=Λx(B)
prawo ekstensjonalności dla małego kwantyfikatora
inizia ad imparare
Λx(A=B)->∨x(A)=∨x(B)

Devi essere accedere per pubblicare un commento.